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ABSTRACT

Methods of regression commonality analysis are generalized for use in canonical

correlation analysis. An actual data set is employed to illustrate the extension. The

method can be applied with respect to each canonical function in an analysis to

determine the proportion of explanatory power of a variable or variable set which is

unique and the proportion which is shared with or common to other variables also.
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Canonical correlation analysis (Hotelling, 1935) has been available to researchers

in theory for some 50 years. Kerlinger (1973, p. 652) suggests that "some research

problems almost demand canonical analysis" and Cooley and Lohnes (1971, p. 176) argue

that "it is the simplest model that can begin to do justice to this difficult problem

of scientific generalization." Krus, Reynclds: and Krus (1976, p. 725) noted that,

"Dormant for nearly half a century, Hotelling's (1935, 1936) canonical variate analysis

has come of age. The principal reason behind its resurrection was its computerization

and inclusion in major statistical packages."

Notwithstanding Levine's (1977, p. 8) assertion that "especially with respect to

canonical correlation, there seem to be relatively few remaining puzzles to be solved,"

several puzzles involving the technique have been recognized and resolved in recent

years. Noteworthy examples include specialized canonical rotation procedures (Bentler

& Huba, 1982), backward variable elimination procedures (Thompson, 1982b), and

procedures to estimate result invariance (Thompson, 1982a). Thompson (1984a)

summarizes these and other recent extensions of canonical methods.

The present paper discusses methods of partitioning the ability of the variables

in a canonical set to explain the variables in the other canonical set. These methods

were originally developed for application in multiple regression analysis and have come

to be referred to as "commonality analysis" (Pedhazur, 1982, pp. 199-211). Cooley and

Lohnes (1976, p. 219) suggest that "the commonality method of partitioning of variance

in multivariate regression is an informative, conservatively safe method for most

situations." Lohnes and Cooley (1978, p. 17) argue that the results of commonality

analyses "can well be the frosting on the cake that get the first attention." The fact

that "virtually all of the commonly encountered parametric tests of significance can be
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treated as special cases of canonical correlation analysis" (Knapp, 1978, p. 410)

suggests that commonality analysis might also be applied usefully in the canonical

case, if a canonical extension of this regression method can be specified. Data from

an actual study will be used to illustrate the applications of this extension.

Commonality Analysis

Commonality analysis was originally developed for use in regression studies under

the rubrics, "element analysis" (Nalebon & Spurrell, 1967) and "components analysis"

(Mayeske, Wisler, Beaton, Weinfield, Cohen, Okada, Proshek & Tabler, 1969). The

analysis indicates how much of the explanatory power of a variable is "unique" to the

variable, and how much of the variable's explanatory ability is "common" to or also

available from one or more other variables. Mood (1969) presents an algebraic rule for

computing these variance partitions for any number of variables. In addition to

tabling the computaticnal procedures for studies involving up to five variables in a

set, Seibold and McPhee (1979) provide a brief and understandable introduction to this

method as applied in the regression case.

TWO features of ccamonality analysis merit some explanation. First, conponalities

should not be confused with the interaction effects investigated in ANOVA studies

(Seibold & McPhee, 1979, p. 365). As Thompson (1984b, p. 8) explains, "interaction is

the unique effect of two or more independent variables which in combination affect the

dependent variable. Commonality indicates the proportion of predictive ability of a

single variable that also happens to reside in another single predictor variable too;

no unique effect of the predictors acting in combination is involved."
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Second, although uniqueness estimates can never be negative, commonality

partitions can be. This is counterintuitive since the result seems to indicate that

two or more variables have in common the ability to explain less than zero percent of

the variance in the criterion variable or variable set. Instead, negative

camonalit1es frequently indicate the presence of suppressor effects (DeVito, 1976,

p. 12). Beaton (1973, p. 12) provides a conceptual illustration of how a negative

ccumonality can have important substantive implications:

Both weight and speed are important to success as a

1.rofessional football player and each would be moderately

correlated with a measure of success in foothall. Weight and

speed are presumably negatively correlated and would have a

negative commonality in predicting success in football. If

both weight and speed are known, one would expect to make a

much better prediction of success using both variables to

select fast, heavy men rather than just selecting the fastest

regardless of speed. Thus the negative commonality indicates

that explanatory per of either is greater when the other is

used.

Beaton's conceptual example is supplemented by Seibold and McPhee's (1979, pp. 364-365)

report of regression results from an actual cancer study that may well have been

grossly misinterpreted if a commonality analysis detecting suppressor effects had not

been conducted.

Example Canonical Extension
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As noted previously, commonality analysis has not been applied to partition the

squared canonical correlation coefficient, although commonality analysis has been

applied to partition both squared multiple correlation and redundancy coefficients

(Cooley & Lohnes, 1976). The extension proposed here capitalizes on the fact that

canonical analysis can be performed using a regression computer routine if one set of

variables is aggregated into canonical variate scores. Then the previously discussed

rules for variance partitioning can also be applied in the multivariate case. An

example application illustrates the procedure.

Miller (1984) reports a study of the death anxiety of various groups of educators

who differ in their degree of contact with terminally ill youngsters. The theoretical

framework and additional details of the study are presented in the original report,

although a commonality analysis was not conducted by Miller. The tabled results are

reported here in sane detail for readers who wish to verify selected results.

INSERT TABLE 1 ?WIT HERE.

The first step in canonical commonality analysis involves the calculation in the

usual manner of canonical functions and canonical correlation coefficients. These

analyses are based on the correlation matrix presented in Table 1 and involved four

criterion variables ("W" to "Z") and six predictor variables ("A" to "F"). The first

canonical function is also presented in Table 1. The same procedures can be applied to

partition the squared canonical correlation for any function, so discussion of only the

first function should suffice as an example. The squared canonical correlation

associated with the first function was .13739 (Pc = .37066, chi squared = 38.71, df =

24,2 < .05).

7



Canonical Commonality Analysis Page 5

The second step in canonical commonality analysis involves the calculation of

canonical variate scores for all subjects. In the present example the partition was

conducted to explore the ability of the six predictors to explain variance in the

criterion variable set, so variate scores were computed for all 160 subjects using the

function coefficients presented in Table 1. The function coefficients are multiplied

times subjects' Z-scores on the criterion variables. For example, for the first

subject the computations were:

(.56672 x zCOPING) (.63526 x ZFEAR) + (-.49114 x ZSBORT) + (.18460 x ZPAINFUL)

(.56672 x .11606) + (.63526 x -.17941) + (-.49114 x -.31146) + (.18460 x 1.00038)

.06583 - .11397 + .15297 + .18467 = .28950

Of course, some statistics packages readily compute variate scores as an option.

Otherwise with most packages the scores are readily calculated using automated compute

procedures.

The third step involves the calculation of regression equations predicting the

variate scores with all possible combinations of the predictor variable sets of

interest. In the present study interest centered on the prediction of the four

criterion variables (represented by the variate scores labelled "Y*" in Table 1) using

the predictors age, locus of control, religious preference, and the three job role

contrasts as a set (labelled "D*"). The 15 combinations of these predictors, their

predictive abilities, and the use of the values in computing canonical uniqueness and

commonality estimates are presented in Table 2. Again, readers can verify these

results by analyzing the relevant portion of the Table 1 correlation matrix, this time

involving variables labelled "Y*", and "A" through "F".

INSERT TABLE 2 ABOUT HERE.
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It should be noted that coefficients involving the "D*" variable set actually

involved three predictors, "D" through "F". For example, the squared multiple

correlation involving the canonical variate spores ("Y") and the three predictors in

the job role set ("D") was .01820. Thus4 the example makes the point that these

procedures can be employed `coo examine either individual variables or vat ions sets of

variables. Of course, the squared multiple corre1 4tion using all the predictors to

predict "Y*" (.13739) exactly equals the squared canonical correlation since in the

full model case the regression analysis is a canonical analysis.

Table 3 summarizes the results in the manner recommended for the regression case

by Mayesks et al. (1969). As should be expected, since the 15 values are partitions of

the squared canonical correlation, the 15 partitions, sum to the value of the squared

canonical correlation. Furthermore, as noted in the table, the analysis also

partitions the individual predictive power of the predictor variables represented by

the squared correlations with the canonical variate scores.

INSERT TABLE 3 ABOUT HERE.

Discussion

Canonical commonality analysis is not without limits. For example, as Newton and

Spurrell (1967, p. 61) note, "it is difficult to see that statistical theory will be

able to give sampling errors which can be used in meaningful tests for secondary

elements [commonalities] since they are obviously not independent statistical

quantities." However, the inability to statistically test commonalities does not seen

inherently debilitating since the technique's focus is on interpretation after a

significant canonical correlation has already been detected. Furthermore, the focus is
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consistent with the recognition that statistical significance is primarily a function

of sample size (Carver, 1978), and with an emphasis on effect sizes in meta-analysis

aDa other applications (Glass, McGaw & Smith, 1981).

Commonality analysis honors the relationships among variables in a set, and as

Seibold and McPhee (1979, p. 355) argue:

Advancement of theory and the useful application of research

findings depend not only on establishing that a relationship

exists among predictors and the criterion, but also upon

determining the extent to which those independent variables,

singly and in all possible combinations, share variance with

the dependent variable. Only then can we fully know the

relative importance of independent variables with regard to the

dependent variable in question.

As Mood (1969, p. 480) notes, "The independent variables in any social process, and

certainly in education, are highly correlated among themselves, and this kind of

partition of variance provides measures of the extent to which they overlap each other

in their association with the dependent variable."

A final benefit of canonical commonality analysis is didactic. The extension of a

regression technique to the canonical case reinforces the recognition (Knapp, 1978)

that canonical analysis is the most general case of parametric significance testing.

Understanding the lirmages among various statistical methods may facilitate more

considered analytic choices in contemporary research practice.
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Table 1

Correlation and Canonical Function Coefficients

Criterion Variables

Coping with Death (W)
Fear of Dying (X)
Shortness of Life (Y)
Painful Death (Z)

Predictor Variables
Age (A)

Locus of Control (B)
Religious Preference (C)
Role Group Contrast 1 (D)

Contrast 2 (E)
Contrast 3 (F)

W

-00003
-00001
00000

-15690
12944
08211

-09408
06376
13771

X

00000
00000

-17885
20089
03595
06045
13514

-01418

Y

00001

13266

-09838
-09457
04350
05524

-04437

Z

-09564
03795

-18293
-03547
06344

-10881

Y*

-28534
25630
08205

-04283
10657
07074

A

-19567
-15454
-11957
-35704
-26963

B

-08741
07962
12548
07028

C

02673
04629
39279

D

00000
00000

Function
E Cbefs.

.567

.635

-.491
.185

-.698
.610

.227
-.254
-.049

00000 -.129

Note: "Y*" represents the set of canonical variate scores for the criterion variable set.
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Unique to A

Unique to B

Unique to C

Table 2
Canonical Commonality Computations

R2 - R2
A,B,C,D* B,C,D*
.13739 - .08600 = .05139
R2 -R2
A,B,C,D* A,C,D*
.13 -739 .0059 = .04780
11 4 - 4
A,B,C,D* A,B,D*
.13739 - .12157 = .00582

Unique to D* R 4 R
A,B,C,D* A,B,C
.13739 - .12727 n .01012

Common to / R 2 + R 2 - R 2

A,C,D* B,C,D* C,D*
.08959 + .0600 - .02122

Common to A,C R 2 + R 4 R
A,B,D* B,C,D* B,D*
.1,3157 + .0,11600 - .02807

Common to A,D* R 4 R
A,B,C B,C,D* B,C
.12727 + .08600 - .07668

Common to B,C R2 +R2 - R 2

A,B,D* A,C,D* A,D*
.13157 + .08959 - .08751

Common to B,D* R2 +R2 -R2
A,B,C A,C,D* A,C
.1,727 + .08959 - .0g290

Comm to C,D* R R 4 R 4
A,B,C A,B,D* A,B

727 + .13157 - 12321
Comm to A,B,C + R 4 R 2 +

C,D* B,D* A,D*
.02122 .0907 .0g751

Common to A,B,D* R
+
+ R 4

+
+ R `

Common to A,C,D*
B,D* B,C A,B
.07807 + .07668 + .12321

Common to B,C,D* R 2 + R 2 + R 2

A,D* A,C A,B
.08751 + .0a290 + .12321

Common to all R + R 4 R
D*
.01820 + .00673 + .06569

- R2 - R 2 - R 2
C,D* B,D* B,C

- .02122 - .07807 - .07668

C,D* B,D* AEC
.02122 + .07807 + .08290
R2 + R 2 + R 2

- R 2

A,B,C,D*
- .12739 n .01698
_ R2

A,B,C,D*
- .1739 = .00211
- 4

A,B,C,D*
- .13739 =-.00080
- R 2

A,B,C,D*
- .13739 =-.00374
- R

A,B,C,D*
- .1739 =-.00343
- R 4

A,B,C,D*

R-

=A13739 40941
- -

A,B,C,D* D*
R2
B,C,D*

+ .9739 - 44820 - .0Q600
+ - R -

A,B,C,D* C B,C,D*
+ .13739 - .00673 - .08600
+ R - R2 - R2

A,B,C,D* B B,C,D*
+ .13739 - .06569 - .08600
+ R2 -R2 -R2

A,B,C,D* A A,C,D*
+ .p739 7, .08142 - .08959
+ Rh +R2 +R2 +

A B,C,D* A,C,D*

- R2 - R 2
A,C,D* A,B,D*

- 48959 .13157 =-.00117
-

-
R4 -11 4
A,C,D* A,B,C

- .28959 - .12727 = .00999
- Itz - R

A,B,D* A,B,C
- .13157 - .12727 =-.00635
- R2 -R2

A,B,D* A,B,C
- A13157 - A12727 =-.01001
R4 R 4
A,B,D* A,B,C

+ .08142 + .08600 + .08959 + .13157 + .12727
- R2 - R2 -1t2 - R2

A,D* A,C A,B A,B,C,D*
- .08751 - .08290 - .12321 - .13739 = .01066
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Table 3

Summary of Commonality Results

A

Unique to Age (A) 5.1%

B C D*

Unique to Locus of Control (B) 4.8%

Unique to Religious Preference (C) .6%

Unique to Role Contrasts (D*) 1.0%

Common to A,B 1.7% 1.7%

Common to A,C .2% .2%

Common to A,D* -.1% -.1%

Common to B,C -.4% -.4%

Common to B,D* -.3% -.3%

Common to C,D* .9% .9%

Common to A,B,C -.1% -.1% -.1%

Common to A,B,D* 1.0% 1.0% 1.0%

Common to A,C,D* -.6% -.6% -.6%

Common to B,C,D* -1.0% -1.0% -1.0%

Common to A,B,C,D* 1.1% 1.1% 1.1% 1.1%

Sum of Partitions in Column 8.3% 6.7% .7% 2.0%

Squared Correlation with

CanDnicalVariate Scores .0814 .0657 .0067 .0182

Note: The sum of the 15 partitions (.13878) equals the squared canonical correlation
coefficient within rounding error.
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